

Savvy•gen GI Parasite Panel

REF 619-01LE / 619-01HE

Test kit for 48 determinations

For Professional Use Only IVD CE

Savyon® Diagnostics Ltd. 3 Habosem St. Ashdod 7761003 ISRAEL Tel.: +(972).8.8562920 Fax: +(972).8.8523176 E-mail: support@savyondiagnostics.com

European Authorized Representative: Obelis s.a.

Boulevard Général Wahis 53 1030 Brussels, BELGIUM Tel: +(32) 2. 732.59.54 Fax: +(32) 2.732.60.03 E-Mail : <u>mail@obelis.net</u>

Intended Use

The Savvygen[™] GI Parasite Panel test allows the qualitative detection and differentiation of *Cryptosporidium, Giardia lamblia and/or Entamoeba histolytica* by Real-Time PCR in human stool specimens. The product is intended for use in the diagnosis of *Cryptosporidium, Giardia lamblia and/or Entamoeba histolytica* infections alongside clinical data of the patient and other laboratory test.outcomes.

For *in-vitro* professional diagnostic use.

Background

Cryptosporidium, Giardia lamblia and Entamoeba histolytica are the major etiological agents of the enteric protozoa. These are the most commonly encountered parasitic diseases affecting millions of people each year and causing significant morbidity and mortality worldwide.

Giardia lamblia and *Cryptosporidium spp.* are both protozoan parasites, which can be present without symptoms or cause diarrhea and abdominal discomfort with weight loss and malabsorption. *Entamoeba histolytica* is a unicellular parasite responsible for intestinal and hepatic amoebiasis and occasionally affects other organs. Clinical symptoms of intestinal amoebiasis range from colitis to dysentery or an ameboma, but can be asymptomatic as well. These three parasites can lead to human infection via fecal–oral transmission of the cysts through contaminated food and water and person-to-person contact. They are common in both developed and developing countries, but with an increased risk in the latter due to poor sanitation standards.

Microscopy has been considered to be the gold standard method for diagnosis of these parasites. However, Real-time PCR assay is less labor-intensive with better accuracy and provides better detection of enteric pathogens.

Principles of the Procedure

The Savvygen[™] GI Parasite Panel test is a ready-to use test, which contains in each well all the necessary reagents for Real-Time PCR assay in a stabilized format. The test is designed for the diagnosis of *Cryptosporidium, Giardia lamblia and/or Entamoeba histolytica* in human stool specimens and for aiding in the assessment of infections caused by these parasites.

SavvygenTM GI Parasite Panel test detection is done in a one-step Real-Time format where the test is based on the amplification of highly specific conserved fragments of the conserved region of the 18S rRNA gene for *Cryptosporidium*, *Giardia lamblia and Entamoeba histolytica* respectively. Following extraction of these parasites' DNA, the conserved fragments are amplified by Taq DNA in a Polymerase Chain Reaction (PCR). The assay is based on the 5' \rightarrow 3' exonuclease activity of Taq DNA Polymerase (Figure 1). A fluorophore/quencher dual-labeled probe anneals to an internal specific sequence. Upon primer elongation, Taq DNA Polymerase displaces and hydrolyzes the probe, thus releasing and activating the fluorophore. The presence of *Cryptosporidium*, *Giardia lamblia and/or Entamoeba histolytica* is detected by an increase in observed fluorescence during the reaction. The resulting increase in fluorescence signal is proportional to the amount of amplified product in the sample and detected by the real-time PCR instrument.

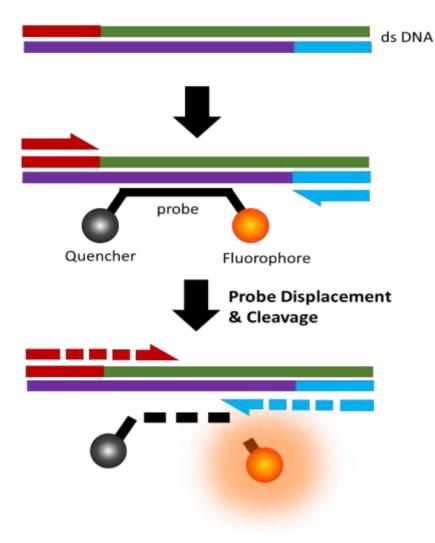


Figure 1. Principle of the Savvygen assay

Savvygen[™] GI Parasite Panel test is a ready-to used test, which contains in each well all the necessary reagents for Real-Time PCR assay in a stabilized format. In addition, an Extraction Control allows the detection of a possible reaction inhibition. The optical channels used for multiplexed detection of the amplified fragments are outlined in Table 1 below:

Table II paraoneo la got ana op	
Target	Optical channel
Giardia	FAM
E. histolytica	ROX
Cryptosporidium	Cy5
Extraction Control	*HEX, VIC or JOE

Table 1: parasites target and optical channel detection;

Materials/ Reagents Provided

Product Description	Contents	
	6 x GI Parasite 8-well strip	
	1 x GI Parasite Positive Control (lyophilized)	
Savvygen™ GI Parasite Panel	1 x GI Parasite Extraction Control	
48 reactions. Cat.# 619-01HE (High profile) 48 reactions. Cat.# 619-01LE (Low profile)	1 x Water RNAse/DNAse free 1mL	
	1 x Rehydration Buffer 1.8 mL	
	1 x Negative Control 1 mL	
	Optical caps	

Additional Equipment and Material Required

- DNA extraction kit.
- Centrifuge for 1.5 mL tube.
- Vortex.
- Micropipettes (0.5-20 µL, 20-200 µL).
- Powder-free disposal gloves
- Real-Time PCR instrument (see table 2A+2B for compatible RT-PCRs).

Table 2A: Compatible Real-Time PCR instruments (Low-Profile)

Bio-Rad	Applied Biosystems
CFX96 Touch [™] Real-Time PCR Detection System	7500 Fast Real-Time PCR System
Roche	7500 Fast Dx Real-Time PCR System
LightCycler [®] 480 Real-Time PCR System	QuantStudio™ 12K Flex 96-well Fast
LightCycler [®] 96 Real-Time PCR System	QuantStudio™ 6 Flex 96-well Fast
Agilent Technologies	QuantStudio™ 7 Flex 96-well Fast
AriaMx Real-Time PCR System	QuantStudio™ 5 Real-Time PCR System
DNA-Technology	ViiA™ 7 Fast Real-Time PCR System
DTlite Real-Time PCR System	Cepheid
DT prime Real-Time Detection Thermal Cycler	SmartCycler [®] *
	Qiagen
	Rotor-Gen® Q*

Table 2B: Compatible Real-Time PCR instrument (High-Profile)

Bio-Rad	Applied Biosystems
CFX96 Touch Deep Well Real-Time PCR Detection System	7500 Real-Time PCR System
iCycler iQ Real-Time PCR Detection System	QuantStudio™ 12K Flex 96-well
iCycler iQ 5 Real-Time PCR Detection System	QuantStudio™ 6 Flex 96-well
DNA-Technology	QuantStudio™ 7 Flex 96-well
DTlite Real-Time PCR System	QuantStudio™ 5 Real-Time PCR System
DT prime Real-Time Detection Thermal Cycler	ViiA™ 7 Real-Time PCR System
Stratagene /Agilent Technologies	Qiagen
Mx3000P™ Real-Time PCR System	Rotor-Gen® Q*
Mx3005P™ Real-Time PCR System	Cepheid
Analytik Jena Biometra	SmartCycler®*
TOptical	Abbot
qTOWER 2.0	Abbot m2000 RealTime System

* Once the product has been reconstituted following the appropriate procedure, transfer it into the specific Rotor-Gene® Q or SmartCycler® tubes.

Note: Savvygen[™] GI Parasite Panel test has been validated on the following equipment: Applied Biosystems 7500 Fast Real-Time PCR System, Bio-Rad CFX96 Touch[™] Real-Time PCR Detection System, Agilent Technologies AriaMx Real-Time PCR System, DNA-Technology DTprime Real-time Detection Thermal Cycler, DNA-Technology DTlite Real-time Detection Thermal Cycler, Rotor-Gene® Q (Qiagen), SmartCycler® (Cepheid),

Transport and Kit Storage

The Savvygen kits can be shipped and stored at 2-37°C until the expiration date stated in the label.

After resuspension of the Positive Control, store at -20°C. Avoid repeated freeze/thaw cycles. It is recommended to make aliquots of the positive control and store at -20°C once resuspended, in order to avoid freeze & thaw cycles.

Precautions

Amplification technologies can amplify target nucleic acid sequences over a billion-fold and provide a means of detecting very low concentrations of target. Care must be taken to avoid contamination of samples with target molecules from other samples, or amplicons from previous amplifications. Follow these recommendations to help control contamination.

- Separate pre-amplification steps from post-amplification steps. Use separate locations for pre- and postamplification. Use suitable lab equipment for each stage. Prepare samples in a laminar flow hood using suitable equipment to minimize contamination. Set up the post-amplification area in a low-traffic area with suitable equipment.
- 2. The laboratory process must be one-directional, it should begin in the Extraction Area and then moved to the Amplification and Detection Areas. Do not return samples, equipment and reagents to the area where the previous step was performed.

- 3. Use disposable containers, disposable barrier pipette tips, disposable bench pads, and disposable gloves. Avoid washable lab wear.
- 4. Use a diluted bleach solution (0.2% sodium hypochlorite) to treat waste from the post-amplification and detection areas, as the waste contains amplicon. Use the bleach solution to wipe down equipment and bench areas, and to treat drains used to dispose of liquid waste.
- 5. Use negative controls to monitor for possible contamination during reaction setup. If reagent contamination is detected, dispose of the suspect reagents.
- 6. Do not use after expiration date.
- 7. Specimens must be treated as potentially infectious as well as all reagents and materials that have been exposed to the samples and handled in the same manner as an infectious agent. Take necessary precautions during the collection, storage, treatment and disposal of samples.

Test Procedure

Extraction Control Preparation

Note: The Water RNAse/DNAse free vial must be utilized first to reconstitute the lyophilized Extraction Control **in pre-PCR laboratory area**, and subsequently, it can be used for reconstitute the GI Parasite Positive Control in a dedicated area away from the other components.

Open the Extraction Control pouch to re-suspend the lyophilized GI Parasite Extraction Control (green cap vial) with 500 µl of Water RNase/DNase free (transparent cap vial) supplied. To ensure a complete re-suspension, vortex the vial thoroughly. After first use, dispense into aliquots in order to avoid multiple freeze-thaw cycles, and store them at -20°C. It is recommended after the first use, to dispense into aliquots, in order to avoid multiple freeze-thaw cycles and store them at -20°C.

Positive Control Preparation

Note: The Positive Control vial contains a high copy number template of the assay targets with a contamination risk. Therefore, it is recommended to resuspend the vial in a separate laboratory area or a special cabinet.

Open the Positive control pouch to resuspend the lyophilized GI Parasite Positive Control (tube with red cap) with 100 μ L of Water RNAse/DNAse free (transparent cap vial) that is supplied. To ensure a complete resuspension, vortex the tube thoroughly. After the first use, dispense into aliquots, in order to avoid multiple freeze-thaw cycles and store them at -20°C.

Specimen Collection, Processing and DNA Extraction

In order to obtain an adequate sample, the procedure for sample collection must be followed closely and according to the manufacturer's instructions. The stool samples should be collected in clean containers and processed as soon as possible to guarantee the quality of the test. However, samples can be frozen at -20°C for long storage. Ensure only the amount needed is thawed because freezing and thawing cycles are not recommended.

Extraction Control: If the GI Parasite Extraction Control is used as an extraction control for the sample preparation procedure and as PCR inhibition control, add **5µI** of the Extraction Control to the specimen and/or lysis buffer mixture. (clinical specimen, as well as, positive control and/or negative control). If the GI Parasite Extraction Control is used only as a PCR inhibition control, only **1µ**I should be added to the reconstituted Reaction-Mix.

Nucleic Acid (NA) Extraction: for pretreatment and NA isolation, it is recommended to use an appropriate DNA extraction kit according to the manufacturer's protocol. NA extraction may be carried out manually or automatically using commercially available extraction kits.

- QIAamp DNA Mini Kit (Qiagen).
- QIAamp DNA Stool Mini Kit (Qiagen).
- Maxwell®RSC Blood DNA Kit, using the Maxwell® 16 instrument (Promega).
- Invisorb® Spin Universal Kit (Stratec).
- RIDA® Xtract (R-biopharm).

PCR protocol program

Set your thermocycler following the conditions below:

Table 3: Real-Time RT-PCR profile

Step	Temperature	Time	Cycles
Polymerase activation	95°C	2 min	1
Denaturation	95°C	10 sec.	45
Annealing/Extension*	60°C	50 sec.	45

Note: Set the fluorescence data collection during the extension step (*) through the FAM, ROX, Cy5, and HEX, JOE or VIC channels. Depending on the equipment used select the proper detection channel (table 4). For the Applied Biosystems 7500 Fast Real-Time PCR system or the Stratagene Mx3005P[™] Real-Time PCR System check that passive reference option ROX is not marked.

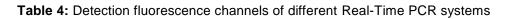
Preparing reaction wells

A. Reconstitute the required reaction wells.

Calculate the number of required reactions including samples and controls. It is highly recommended to run at least one positive and one negative control per run.

- 1. Peel off protective aluminum seal from the strips
- 2. Pipette 15 μ L of Rehydration Buffer (Blue cap vial) into each well.

B. Add samples and controls according to real-time PCR experimental plate set up.


- 1. Pipette 5 µL of DNA sample into each sample well
- 2. Pipette 5 µL of resuspended GI Parasite Positive Control (red cap vial) into the positive control well.
- 3. Pipette 5 µL of Negative Control (orange cap vial) into each negative control well.
- 4. Cover the wells with the caps provided. Spin down briefly if needed.

Note: If using the GI Parasite Extraction Control as PCR inhibition control, add now 1µl of the Extraction Control to the sample/ negative control/ positive control well.,

C. Performing PCR.

- 1. Place the strips in the Real-Time PCR instrument.
- 2. Start the run.

The fluorescence detection channels of common Real-Time PCR Thermocyclers are specified in Table 4.

RT- PCR THERMOCYCLER	System Detection channels	Savvygen probes channels	Remarks
	465/510	FAM	
Roche LightCycler [®] 96 or	533/580	HEX	Color Compensation is
LightCycler [®] 480II	533/610	ROX	required only for LC480 system
Γ	618/660	Cy5	
	FAM	FAM	
Applied Biosystems	VIC	HEX	Passive reference
ABI 7500 fast	ROX	ROX	option ROX is not mark
	Cy5	Cy5	
	FAM	FAM	
	HEX	HEX	
Bio-Rad CFX96 ™ –	ROX	ROX	
	Cy5	Cy5	
	FAM	FAM	
	HEX	HEX	
Agilent AriaMx	ROX	ROX	
	Cy5	Cy5	
	FAM	FAM	
DNA-Technology	HEX	HEX	
DTlite / DTprime	ROX	ROX	
	Cy5	Cy5	
	Channel 1	FAM	
Smartcycler®	Channel 2	HEX	
Cepheid	Channel 3	ROX	
	Channel 4	Cy5	
	FAM	FAM	
Abbott m2000rt	HEX	HEX	
	ROX	ROX	
	Cy5	Cy5	
Rotor-Gene®Q	Green	FAM	
Qiagen	Yellow	HEX	
Γ	Orange	ROX	
	Red	Cy5	

Interpretation of results

Interpretation of results can be automatically performed if programed by the user using the RT-qPCR instrument software following the manufacturer's instructions. It is required to run assay controls (positive and negative controls) in each run to validate the reaction.

Note: The positive controls used in each run, must show an amplification curve of the tested targets which validates the reaction while the negative control well should demonstrate an absence of signal (except Extraction Control target).

Interpretation	Cryptosporidium (Cy5)	Giardia lamblia (FAM)	E. histolytica (ROX)	Extraction control (HEX, VIC or JOE)	Negative control	Positive control
Cryptosporidium, Giardia lamblia and E. histolytica Positive	POS	POS	POS	POS / NEG	NEG	POS
Cryptosporidium, Giardia lamblia and E. histolytica Negative	NEG	NEG	NEG	POS	NEG	POS
Cryptosporidium Positive , Giardia lamblia and E. histolytica Negative	POS	NEG	NEG	POS / NEG	NEG	POS
Giardia lamblia Positive , Cryptosporidium and E. histolytica Negative .	NEG	POS	NEG	POS / NEG	NEG	POS
E. histolytica Positive , Cryptosporidium and Giardia lamblia Negative .	NEG	NEG	POS	POS / NEG	NEG	POS
Cryptosporidium and Giardia lamblia Positive , E. histolytica Negative .	POS	POS	NEG	POS / NEG	NEG	POS
Giardia lamblia and E. histolytica Positive , Cryptosporidium Negative .	NEG	POS	POS	POS / NEG	NEG	POS
Cryptosporidium and E. histolytica Positive , Giardia lamblia Negative .	POS	NEG	POS	POS / NEG	NEG	POS
Invalid run	POS	POS	POS	POS	POS	POS
Invalid run	NEG	NEG	NEG	NEG	NEG	NEG

Table 5: Results interpretation for the Savvygen[™] GI Parasite Panel assay

POS: presence of Amplification signal NEG: No amplification signal

Positive sample- A sample is considered a positive for the target in the presence of amplification curve signal below a threshold cycle (Ct) 40 and the Extraction Control amplification curve signal is also shown. *Note: in some cases of positive sample the Extraction Control amplification curve signal is negative due to high copy number of the target DNA template which can cause competition in the reaction.*

Negative sample- A sample is considered a negative for the target if there is no evidence of amplification signal in the detection system and the Extraction Control is positive.

Extraction Control- The Extraction Control must show an amplification curve, which verifies the correct function of the extraction and amplification mix. It should be noted that the detection of Extraction Control may not be necessary in case of positive results in one or more of the pathogens.

Positive control- The positive controls used in each run must show an amplification curve for the 3 parasites, which validates the reaction.

Negative control- The negative controls included in each run must show the **absence** of signal for the 3 parasites, which validate the reaction.

Invalid run- The assay should be considered as invalid and a new run should be performed if there is signal of amplification for one of the pathogens in the negative control well or absence of signal in the positive control well.

Note: If an amplification curve for the Extraction Control is not shown in negative samples, it may be due to PCR inhibitors. In such case, the sample should be retested by dilution of the original sample 1:10. Alternatively, it is recommended to repeat the nucleic acid extraction due to possible problems caused by PCR inhibitors.

Limitations of the test

- This test provides a presumptive diagnosis of *Cryptosporidium, Giardia and/or E. histolytica* infection. All results must be interpreted together with other clinical information and laboratory findings available to the physician.
- This assay should be used only with fecal I samples. The use of other samples has not been established.
- Error results may occur from improper sample collection, handling, storage, technical error, sample mixup, or because the number of organisms in the sample is below the analytical sensitivity of the test.
- The presence of PCR inhibitors may cause invalid results.
- A false positive result with other targets is possible due to contamination with PCR products from previous testing.
- As with all PCR-based *in-vitro* diagnostic tests, extremely low levels of target below the analytical sensitivity of the assay may be detected, but results may not be reproducible.
- If a certain sample result is Invalid then the sample should be repeated from DNA extraction.

Quality Control

In order to confirm the appropriate performance of the molecular diagnostic technique, an Extraction Control is included in each reaction. This is in addition to the positive and negative controls in order to interpret the results correctly.

Performance Characteristics

Clinical sensitivity and specificity

A retrospective clinical study of 172 fecal samples from symptomatic patients was conducted to evaluate the performance of the Savvygen[™] GI Parasite Panel test for the detection and differentiation the presence of the parasites *Cryptosporidium, Giardia spp. and E. histolytica.* Clinical specimens were previously characterized by two commercial CE approved kits for the above pathogens- i) RIDA[®]GENE Parasitic Stool Panel II (r-Biopharm). ii) FTD Stool parasites (fast-track DIAGNOSTICS).

The results were as follow: *Cryptosporidium* was detected in 38 out of 39 positive samples by the Savvygen[™] GI Parasite Panel test. Three additional samples, which were detected by the Savvygen[™] GI Parasite Panel test, were not detected by the other commercial tests. For discrepant analysis, these 4 samples were evaluated by an additional in-house Real-Time PCR (Hadfield et al., 2011), which confirmed the Savvygen[™] GI Parasite Panel test results (table 6).

Giardia was detected in 58 positive samples (58/58) the Savvygen[™] GI Parasite Panel. Two additional samples were detected as positive by the Savvygen[™] GI Parasite Panel test, while obtaining negative results by the two commercial tests (table 6).

E. histolytica was detected in the 8 positive samples (2 samples were spiked with EH cells prior to testing by the SavvygenTM GI Parasite Panel test). One additional sample was detected as positive, while obtaining negative results from the commercial tests (table 6).

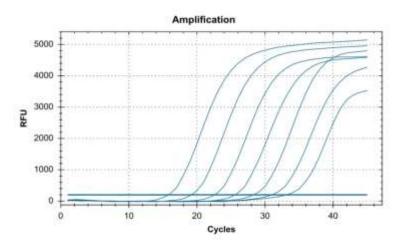
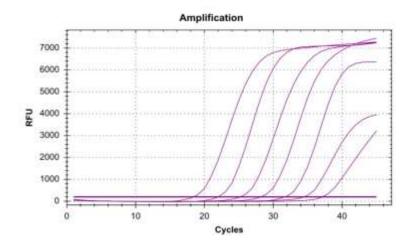

Detheren	Positive Agree	Specificity		
Pathogen	TP/ (TP+FN)	Percent	TN/ (TN+FP)	Percent
Cryptosporidium spp.	38/39	97.4%	130/133	97.7%
Giardia lamblia	58/58	100%	112/114	98.2%
E. histolytica	8/8	100%	163/164	99.3%

Table 6: Results interpretation


The results show a high sensitivity and specificity to detect *Cryptosporidium, Giardia and E. histolytica* using the Savvygen[™] GI Parasite Panel test.

Analytical sensitivity

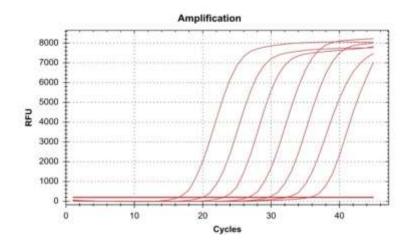

In a series of experiments to establish the limit of detection for each pathogen- *Cryptosporidium, Giardia and E. histolytica,* a 10-fold dilution of 10^7 to 10^1 copies/reaction was conducted for each target. According to the results, the Savvygen GI Parasite Panel has a detection limit of ≥ 50 DNA copies per reaction for *Cryptosporidium* and ≥ 10 DNA copies per reaction for *Giardia lamblia* and *Entamoeba histolytica* (Figure 1, 2 and 3).

Figure 1. Amplification plot for 10-fold dilution series of *Giardia lamblia* template ranging from 10⁷ to 10¹ copies/rxn (FAM channel).

Figure 2. Amplification plot for 10-fold dilution series of *Cryptosporidium* template ranging from 10⁷ to 10² copies/rxn (Cy5 channel).

Figure 3. Amplification plot for 10-fold dilution series of *Entamoeba histolytica* template ranging from 10⁷ to 10¹ copies/rxn (ROX channel).

Analytical specificity

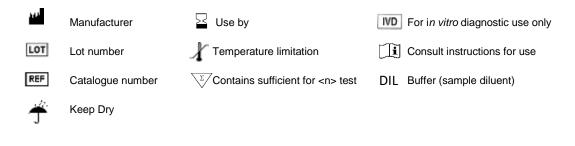
The analytical specificity for *Cryptosporidium, Giardia lamblia and Entamoeba histolytica* was evaluated by a panel of the following microorganisms using the Savvygen[™] GI Parasite Panel test, and no cross-reactivity was seen between any of the following species.

	Cross-Reactivity Test			
Pathogen	Savvygen™ GI Parasite Panel			
	Cryptosporidium	Giardia	E. histolytica	
Adenovirus 40/41	-	-	-	
Astrovirus Genotype I-VIII	-	-	-	
Norovirus GI and GII	-	-	-	
Rotavirus A	-	-	-	
Aeromonas hydrophila	-	-	-	
Arcobacter butzleri	-	-	-	
Bacteroides fragilis	-	-	-	
Candida albicans	-	-	-	
Campylobacter lari	-	-	-	
Campylobacter fetus	-	-	-	
Campylobacter coli	-	-	-	
Campylobacter jejuni	-	-	-	
Campylobacter upsaliensis	-	-	-	
Citrobacter freundii	-	-	-	
Clostridium difficile	-	-	-	
Clostridium perfringens	-	-	-	
Enterococcus faecalis	-	-	-	
Enterotoxigenic E. coli (ETEC)	-	-	-	
Enteropathogenic E. coli (EPEC)	-	-	-	
Helicobacter pylori	-	-	-	
Helicobacter hepaticus	-	-	-	
Helicobacter cinaedi	-	-	-	
Helicobacter heilmannii	-	-	-	
Klebsiella oxytoca	-	-	-	
Listeria monocytogenes	-	-	-	
Pseudomonas aeruginosa	-	-	-	
Proteus vulgaris	-	-	-	
Salmonella typhi	-	-	-	
Salmonella paratyphi A	-	-	-	
Salmonella paratyphi B	-	-	-	
Salmonella typhimurium	-	-	-	
Salmonella bongori	-	-	-	
Salmonella enteritidis	_	_	_	
Salmonella enterica	_	-	-	

Salmonella pullorum	-	-	-
Salmonella gallinarum	-	-	-
Serratia liquefaciens	-	-	-
Shigella flexneri	-	-	-
Shigella dysenteriae	-	-	-
Staphylococcus aureus	-	-	-
Vibrio parahaemolyticus	-	-	-
Y. enterocolitica O:3 / O:9	-	-	-

Analytical reactivity

The reactivity of the Savvygen[™] GI Parasite Panel test for *Cryptosporidium* was confirmed by the Real-Time amplification using *Cryptosporidium parvum* showing positive results.


The reactivity of Savvygen[™] GI Parasite Panel test for *Giardia lamblia* was confirmed by the Real-Time amplification using *Giardia lamblia* showing positive results.

The reactivity of Savvygen[™] GI Parasite Panel test for *Entamoeba histolytica* was confirmed by the Real-Time amplification using *Entamoeba histolytica* strain DS4-868, showing positive results.

Bibliography

- 1. J.R. Limor. Detection and differentiation of *Cryptosporidium* parasites that are pathogenic for humans by real-time PCR. Journal of Clinical Microbiology 2002; 40(7): 2335-2338.
- S.E. Stroup et al. Real-time PCR detection and speciation of Cryptosporidium infection using Scorpion probes. Journal of Medical Microbiology 2006; 55: 1217-1222
- S.J. Hadfield et al. Detection and differentiation of *Cryptosporidium spp*. in human clinical samples by using real-time PCR. Journal of Clinical Microbiology 2011; 49(3): 918-924
- D.V. den Bossche et al. Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in feces. Journal of microbiological methods 2015; 110: 78-84
- 5. R.D. Adam. Biology of Giardia lamblia. Clinical Microbiology Reviews 2001; 14(3): 447-475.
- J.J. Verweij et al. Real-time PCR for the detection of *Giardia lamblia*. Molecular and Cellular Probes 2003; 17(5): 223-225
- 7. R. Fotedar et al. PCR Detection of *Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii* in Stool Samples from Sydney, Australia. Journal of Clinical Microbiology 2007; 45 (3): 1035-1037.
- 8. R. Haque et al. Multiplex real-time PCR assay for detection of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. The American Journal of Tropical Medicine and Hygiene 2007; 76(4): 713-717.
- 9. Y. Lau et al. Real-time PCR assay in differentiating *Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii* infections in Orang Asli settlements in Malaysia. Parasites & Vectors 2013; 6(1): 250.

Symbols for IVD Components and Reagents

CFX[™] and IQ5[™] are registered trademarks of Bio-Rad Laboratories.

ABI®, QuantStudio™, StepOnePlus™and ViiA™ are registered trademarks of Thermo Fisher Scientific Inc.

LightCycler® is a registered trademark of Roche.

Mx3000P[™] and Mx3005[™] are registered trademarks of Agilent Technologies.

Rotor-Gene® Q is a registered trademark of Qiagen.

SmartCycler® is a registered trademark of Cepheid